915 research outputs found

    The initial singularity of ultrastiff perfect fluid spacetimes without symmetries

    Full text link
    We consider the Einstein equations coupled to an ultrastiff perfect fluid and prove the existence of a family of solutions with an initial singularity whose structure is that of explicit isotropic models. This family of solutions is `generic' in the sense that it depends on as many free functions as a general solution, i.e., without imposing any symmetry assumptions, of the Einstein-Euler equations. The method we use is a that of a Fuchsian reduction.Comment: 16 pages, journal versio

    Ecophysiology of coral reef primary producers across an upwelling gradient in the tropical central Pacific

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, M. D., Fox, M. D., Kelly, E. L. A., Zgliczynski, B. J., Sandin, S. A., & Smith, J. E. Ecophysiology of coral reef primary producers across an upwelling gradient in the tropical central Pacific. Plos One, 15(2), (2020): e0228448, doi:10.1371/journal.pone.0228448.Upwelling is an important source of inorganic nutrients in marine systems, yet little is known about how gradients in upwelling affect primary producers on coral reefs. The Southern Line Islands span a natural gradient of inorganic nutrient concentrations across the equatorial upwelling region in the central Pacific. We used this gradient to test the hypothesis that benthic autotroph ecophysiology is enhanced on nutrient-enriched reefs. We measured metabolism and photophysiology of common benthic taxa, including the algae Porolithon, Avrainvillea, and Halimeda, and the corals Pocillopora and Montipora. We found that temperature (27.2–28.7°C) was inversely related to dissolved inorganic nitrogen (0.46–4.63 μM) and surface chlorophyll a concentrations (0.108–0.147 mg m-3), which increased near the equator. Contrary to our prediction, ecophysiology did not consistently track these patterns in all taxa. Though metabolic rates were generally variable, Porolithon and Avrainvillea photosynthesis was highest at the most productive and equatorial island (northernmost). Porolithon photosynthetic rates also generally increased with proximity to the equator. Photophysiology (maximum quantum yield) increased near the equator and was highest at northern islands in all taxa. Photosynthetic pigments also were variable, but chlorophyll a and carotenoids in Avrainvillea and Montipora were highest at the northern islands. Phycobilin pigments of Porolithon responded most consistently across the upwelling gradient, with higher phycoerythrin concentrations closer to the equator. Our findings demonstrate that the effects of in situ nutrient enrichment on benthic autotrophs may be more complex than laboratory experiments indicate. While upwelling is an important feature in some reef ecosystems, ancillary factors may regulate the associated consequences of nutrient enrichment on benthic reef organisms.This work was supported by funding from the Moore Family Foundation, the Gordon and Betty Moore Foundation, the Scripps family, and anonymous donors. The funders had no role in study design, data collection and analysis, or preparation of the manuscript

    Three-component modelling of O-rich AGB star winds I. Effects of drift using forsterite

    Full text link
    Stellar winds of cool and pulsating asymptotic giant branch (AGB) stars enrich the interstellar medium with large amounts of processed elements and various types of dust. We present the first study on the influence of gas-to-dust drift on ab initio simulations of stellar winds of M-type stars driven by radiation pressure on forsterite particles. Our study is based on our radiation hydrodynamic model code T-800 that includes frequency-dependent radiative transfer, dust extinction based on Mie scattering, grain growth and ablation, gas-to-dust drift using one mean grain size, a piston that simulates stellar pulsations, and an accurate high spatial resolution numerical scheme. To enable this study, we calculated new gas opacities based on the ExoMol database, and we extended the model code to handle the formation of minerals that may form in M-type stars. We determine the effects of drift by comparing drift models to our new and extant non-drift models. Three out of four new drift models show high drift velocities, 87-310 km/s. Our new drift model mass-loss rates are 1.7-13 per cent of the corresponding values of our non-drift models, but compared to the results of two extant non-drift models that use the same stellar parameters, these same values are 0.33-1.5 per cent. Meanwhile, a comparison of other properties such as the expansion velocity and grain size show similar values. Our results, which are based on single-component forsterite particles, show that the inclusion of gas-to-drift is of fundamental importance in stellar wind models driven by such transparent grains. Assuming that the drift velocity is insignificant, properties such as the mass-loss rate may be off from more realistic values by a factor of 50 or more.Comment: 15 pages, 6 figures, accepted and in pres

    Mass Loss Evolution and the Formation of Detached Shells around TP-AGB Stars

    Full text link
    The origin of the so called 'detached shells' around AGB stars is not fully understood, but two common hypotheses state that these shells form either through the interaction of distinct wind phases or an eruptive mass loss associated with a He-shell flash. We present a model of the formation of detached shells around thermal pulse asymptotic giant branch (TP-AGB) stars, based on detailed modelling of mass loss and stellar evolution, leading to a combination of eruptive mass loss and wind interaction. The purpose of this paper is first of all to connect stellar evolution with wind and mass loss evolution and demonstrate its consistency with observations, but also to show how thin detached shells around TP-AGB stars can be formed. Previous attempts to link mass loss evolution with the formation of detached shells were based on approximate prescriptions for the mass loss and have not included detailed modelling of the wind formation as we do here. (abridged)Comment: 16 pages, 15 figures. Accepted for publication in Astronomy & Astrophysic

    Spectral characterisation of inertial particle clustering in turbulence

    Get PDF
    Clustering of inertial particles is important for many types of astrophysical and geophysical turbulence, but it has been studied predominately for incompressible flows. Here, we study compressible flows and compare clustering in both compressively (irrotationally) and vortically (solenoidally) forced turbulence. Vortically and compressively forced flows are driven stochastically either by solenoidal waves or by circular expansion waves, respectively. For compressively forced flows, the power spectrum of the density of inertial particles is a useful tool for displaying particle clustering relative to the fluid density enhancement. Power spectra are shown to be particularly sensitive for studying large-scale particle clustering, while conventional tools such as radial distribution functions are more suitable for studying small-scale clustering. Our primary finding is that particle clustering through shock interaction is particularly prominent in turbulence driven by spherical expansion waves. It manifests itself through a double-peaked distribution of spectral power as a function of Stokes number. The two peaks are associated with two distinct clustering mechanisms; shock interaction for smaller Stokes numbers and the centrifugal sling effect for larger values. The clustering of inertial particles is associated with the formation of caustics. Such caustics can only be captured in the Lagrangian description, which allows us to assess the relative importance of caustics in vortically and compressively forced turbulence. We show that the statistical noise resulting from the limited number of particles in the Lagrangian description can be removed from the particle power spectra, allowing us a more detailed comparison of the residual spectra. We focus on the Epstein drag law relevant for rarefied gases, but show that our findings apply also to the usual Stokes drag.Spectral characterisation of inertial particle clustering in turbulencepublishedVersio

    Stream and river typologies - major results and conclusions from the STAR project

    Get PDF
    The EU Water Framework Directive uses abiotic variables for classifying streams and rivers into types. For rivers, the EU Water Framework Directive fixed typology i.e. `System A¿ typology are defined by ecoregions, size based on the catchment area, catchment geology and altitude. Within any given part of the WFD typology, it is assumed that biological communities at undisturbed sites will be broadly similar and will therefore constitute a type-specific biological target and a way to stratify the spatial variability in stream and river monitoring and assessment. The data collected for the STAR project cover 13 countries and include 22 stream types. A total of 233 sites were fully sampled for all biological quality elements (fish, macrophytes, benthic macroinvertebrates, and diatoms) in the study. Analysing the STAR macroinvertebrate dataset in relation to environmental and biogeographical variables resulted in three major groups of stream types that correspond to three major landscape types in Europe: Mountains, Lowlands and Mediterranean. Similar results were found when analysing all four biological quality elements (fish, macrophytes, benthic macroinvertebrates, and diatoms) sampled in the STAR project. The studies also showed that the stream types using the WFD `System A¿ descriptors are probably less useful at finer scales and it is suggested that a stream typology should take three main parameters as a starting point, i.e., climate (temperature), slope (current velocity) and stream size. Existing site-specific multivariate RIVPACS-type predictive models were also compared to both null models and the WFD `System A¿ physical typology as methods of predicting macroinvertebrate reference conditions. It was concluded that the multivariate models are more effective in predicting reference conditions primarily because they make use of continuous rather than categorical predictor variables and because the multivariate RIVPACS-type models are not constrained by the use of a limited number of variables

    WISER Deliverable D3.3-2: The importance of invertebrate spatial and temporal variation for ecological status classification for European lakes

    Get PDF
    European lakes are affected by many human induced disturbances. In principle, ecological theories predict that the structure and functioning of benthic invertebrate assemblage (one of the Biological Quality Elements following the Water Framework Directive, WFD terminology) change in response to the level of disturbances, making this biological element suitable for assessing the status and management of lake ecosystems. In practice, to set up assessment systems based on invertebrates, we need to distiguish community changes that are related to human pressures from those that are inherent natural variability. This task is complicated by the fact that invertebrate communities inhabiting the littoral and the profundal zones of lakes are constrained by different factors and respond unevenly to distinct human disturbances. For example it is not clear yet how the invertebrates assemblages respond to watershed and shoreline alterations, nor the relative importance of spatial and temporal factors on assemblage dynamics and relative bioindicator values of taxa, the habitat constraints on species traits and other taxonomic and methodological limitations. The current lack of knowledge of basic features of invertebrate temporal and spatial variations is limiting the fulfillment of the EU-wide intercalibration of lake ecological quality assessment systems in Europe, and thus compromising the basis for setting the environmental objectives as required by the WFD. The aim of this deliverable is to provide a contribution towards the understanding of basic sources of spatial and temporal variation of lake invertebrate assemblages. The report is structured around selected case studies, manly involving the analysis of existing datasets collated within WISER. The case studies come from different European lake types in the Northern, Central, Alpine and Mediterranean regions. All chapters have an obvious applied objective and our aim is to provide to those dealing with WFD implementation at various levels useful information to consider when designing monitoring programs and / or invertebrate-based classification systems

    Highly efficient incorporation of the fluorescent nucleotide analogs tC and tCO by Klenow fragment

    Get PDF
    Studies of the mechanisms by which DNA polymerases select the correct nucleotide frequently employ fluorescently labeled DNA to monitor conformational rearrangements of the polymerase–DNA complex in response to incoming nucleotides. For this purpose, fluorescent base analogs play an increasingly important role because they interfere less with the DNA–protein interaction than do tethered fluorophores. Here we report the incorporation of the 5′-triphosphates of two exceptionally bright cytosine analogs, 1,3-diaza-2-oxo-phenothiazine (tC) and its oxo-homolog, 1,3-diaza-2-oxo-phenoxazine (tCO), into DNA by the Klenow fragment. Both nucleotide analogs are polymerized with slightly higher efficiency opposite guanine than cytosine triphosphate and are shown to bind with nanomolar affinity to the DNA polymerase active site, according to fluorescence anisotropy measurements. Using this method, we perform competitive binding experiments and show that they can be used to determine the dissociation constant of any given natural or unnatural nucleotide. The results demonstrate that the active site of the Klenow fragment is flexible enough to tolerate base pairs that are size-expanded in the major groove. In addition, the possibility to enzymatically polymerize a fluorescent nucleotide with high efficiency complements the tool box of biophysical probes available to study DNA replication
    corecore